Cryptanalysis of F.E.A.L.
BERT DEN BOER
Centre for mathematics and computerscience (*)

Kruislaan 413
1098 ST AMSTERDAM, The NETHERLANDS

Summary

At Eufocrypt 87 the blockcipher F.E.A.L. was presented [2]. Earlier
algorithms called F.E.A.L-1 and F.E.A.L-2 had been submitted to standarization
organizations but this was presumably the final version. It is a Feistel cipher, but
in contrast to D.E.S., a software implementation does not require a table look-up.
The intention was a fast software implementation and also an avoidance of
discussions about random tables. As Walter Fumy indicated at Crypto 87 [1] a
certain transformation on 32 bits used by the cipher was not complete in contrast
to a remark made during the presentation of F.E.A.L. at Eurocrypt 87.
Furthermore, the transformation is too close to a quadratic function on the input.

I am informed that after my informal expose at Crypto 87 about certain
vulnerabilities of F.E.A.L, its designers have created F.E.A.L.-8 with twice as
many rounds.Later on again versions were renamed. The (definite?) version in
the abstracts [2] without a serial number got version number 1.00 and F.E.A.L.-8
got version number 2.00 in the proceedings of Eurocrypt '87 [3]. In this paper we
shall show that F.E.A.L. as presented at Eurocrypt 87 is vulnerable for a chosen

plaintext attack which requires at most ten thousand plaintexts.

Encryption Algorithm

For convenience and definiteness we first reformulate the encipherment
algorithm. The FEAL-algorithm is a blockcipher acting on 64 bits of plaintext to
produce a 64 bit ciphertext controlled by a 64 bit key.

One of the buildingblocks of the cipher is a transformation S from F28 *
Fp8 % Fy to Fy8 defined by

S(x,y,a)=Rot((x+y+a)mod 256)

*This research was supported by the Netherlands Organization for Advancement of Pure

Research

294

i.e. the 8 bit numbers x and y are considered as residues mod 256, a is the residue
class of 0 or 1 and Rot cyclicly rotates the bits of its input 2 places such that the 6

least significant bits become the 6 most significant bits. Another building

block is the exclusive-or on two bytes denoted by 6. The same notation will be
used for the exclusive-or sums of four byte strings. We define a fi-box as
follows: fy transforms 2 strings of 4 bytes L and R into a four byte string O as

follows: (In shorthand fi(L,R)=0.)

denote the input by L(0) up to L(3) and R(0) up to R(3) and the output by O(0) up
to O(3) then:

hulp=L(2) & L(3)

O(1)=S((L(0) & L(1),(hulp & R(0)),1)
O(0)=S(L(0),(O(1) & R(2)),0)
0(2)=S(0(1) & R(1),hulp,0)
0(3)=S((0(2) ® R(3)),L(3),1)

The function G transforms one string of four bytes into one string of four bytes as
follows:(In shorthand G(I)=0.) denote the input by 1(0) up to I1(3) and the
output by O(1) up to O(3), then:

hulp=I(2) & I(3)
O(1)=S(1(0) & I(1),hulp,1)
0(2)=S(0O(1),hulp,0)
0(3)=S(0(2),13),1)
0(0)=S(0(1),0(0),0).

The blockcipher consists of a key schedule and a data randomizer. The
keyschedule operates as follows: The eight byte input is considered as two strings
A and B(of four bytes each. Further a four byte string Co with all 32 bits zero
is introduced. Iteratively A;,B;,C;yi=1,...,6 are defined by

Bji1=1ik(Aj(C; © By)

Cir1=Ai

Aj+1=Bj.
Further we need two simple functions PL and PR transforming four byte strings
as follows:

295

PL(u,v,w,x)=(0,u,v,0)

PR(u,v,w,x)=(0,w,x,0).
The strings By ,....Bg of the keyschedule are transformed into 6 strings M;,
i=0,...,5 as follows:

My=B3 @ PR(B1)

M;=B3 & B4 @ PL(B1)

M»=PL(B1) & PL(B5)

M3=PR(B1) @ PR(Bj)

My=Bs5 @ Bg @ PR(B1)

Ms=B5 & PL(B1).
The datarandomizer operates as follows (see fig 2): The 64 bit input is viewed as
two strings P(y and Py of four bytes. Now we define

Dg=Py © M

Eg=Py ® P1 ® M;

D1=Ep

E1=Dg @ G(Eq)

Do=E;

E>=D; @ G(Eq)

D3=E;

E3=Dy @ G(Ey & My)

D4=D3 @ G(E3 & M3) @ M5

Eq=E3 & My

Co=D4

Ci1=D4 ® E4
Finally the two strings C(y and Cq of four bytes each are concatenated to form the
64-bit ciphertext.

Cryptanalysis
To determine the key we use a chosen plaintext attack. The choice of the

plaintext depends on results derived from previous plaintext and ciphertext. We
are going to determine the 160 unknown bits in the Mj's as though there is no
relation between them. Once they are determined we can decipher any ciphertext

but we also can use the keyschedule from the bottom to determine the 64-bit

206

key.This process will not require more than tenthousand plaintexts.

Observe the value C @ Cy.It is equal to

Py © My ® My @ G(Eg) ® G(Eg ® My ® G(G(Eq) @ M & Py).
Assume that Pq @ Py is a constant, then E(y and G(E()) are constants too. Define

Ko=G(Eq) & My
K1=Eo ® My
Ko=M4 & My & G(Eg).
CP=Cy® C| &P
then:
1) CP=K5 & G(K1 @ G(K(@ P).
Formule (1) is the crucial formule.By keeping the exclusive-or sum of P and Py
constant it is possible to determine the constants K up to Ky with at most say 300
choices of Py.
Define
KO=(x0,x1,x2,x3)
K1=(y0,y1,x2,x3)
K2=(zo,zl,22,z3)
P0=(a0,a1,a2,a3)
CP=(f0,11,£2,£3).
See figure 1 where internal bytes bk,ck,dk,ek are defined within the picture.

The idea is to solve K first. The first bits to solve are the 6 least
significant bits of x0. This starts by keeping a3,a2,al @ a0 constant and also the
two most significant bits a0 and study the behaviour of one particular bit f! 5 for
the remaining 64 cases. Observe that bl,bz,b3,cl,02,c3,d2,d3 are constant in those
cases. Let 501=b0mod 64 and ¢! loclmod 64 and carry=(b01+cl l)div 64. Then it
holds for the bits c07,d07,d17,e15,f1 5 that their value is of the form "constant 7
carry ". The value c!1 is a constant and as the 6 least significant bits of a0 assume
all 64 possibilities and so b01 assumes all 64 possible values. Counting the number
of times f1 5 is equal to one, leaves us with at most two possibilities for c11.

In order to determine which possibility holds for c11 observe that
changing all or alo the six most significant bits of ¢! and therefore the four most

significant bits of c11 remain constant. Combining the results of two or three

287

counts will give only one consistent possibilty for the two or three values of ¢! 1.
The actual counting never requires the full 192 ciphertexts but at most 127
ciphertexts in special cases (in a very favourable case 10 is enough).

To determine the 6 least significant bits of xU note that at least one of the
two or three actual values of ¢! ! is odd.In that case there exist exactly one value
bO1 such that 601 will give carry=1 and b1 &1 will give carry=0.From this we
conclude that b01 equals 64-c 1. We know the corresponding value of a0 50 indeed
we can determine the six least significant bits of x0,

To proceed we use this knowledge and start changing the lowest bit of a0
& al . Two well-chosen plaintexts and the corresponding values of fl 5 1s enough to
determine the least significant bit of xO @ x!. The same is true for the next two
bits of x0 & x! .Simultaneously the three least significant bits of x2 @ x3 are
determined. To determine the next three bits of x0 @ x! and x2 & x3 might
require 42 plaintexts in the worst case. Still only the value of f! 5 1s all what we
need of the ciphertext.

Along similar lines we can determine x0 @ x1 | x2 @ x3 |, the seven least
significant bits of x0 and the seven least significant bits of x3. For the moment we
are allowed to assume that xoo and x30 are zero. In other words K is determined
and at the cost of at most 250 plaintexts.

Once K is determined the determination of K and K» is easy and will
cost at most 30 well chosen plaintexts with the corresponding
ciphertexts. There is a freedom in K of two bits but we can just do a choice.

Now observe what happens if we change Py @P|. Then the new value of
Ky is known . With the above described technique we establish the new value of
Kg. Then K follows directly because of a linear relation.

This results in knowledge of Mg @G(M; & (P ®P})) for values
Po@P; of our own choosing. With say at most 30 values we can establish Mg and
M except for a freedom of two bits.

Finally we study the values C(y we have encountered up to this

moment.Those give equations of the form
Q=M5 8GM3 Q)
where Q; and Q) are known. Considering the fact that up to now we have between

298

. |

100 and 10000 ciphertexts it is safe to assume that we have enough data to
determine M3 and Ms.

Combining this knowledge we can decipher any ciphertext. If we want to
recover the original key we use the restricted possibilities for My and M3 to
reduce the uncertainty in M) up to M5 . Given those M;j's we can use these data
and the last fy-box to solve Bg and B4 and a few more bytes. After that we can
simply try the 256 possibilties for B3(2) and resolve the keyschedule.
Conclusions

In the presented version the G-box is too regular. If one wants this small
number of rounds(4) a better design should be possible. In [3] the algorithm with
twice as many rounds is considered by the authors to be secure because four
statistical values are close or equal to theoretical values but the same argument was
used for the algorithm presented at Eurocrypt '87. As this turned out not to be
sufficient one should use other arguments for the security of an encipherment
algorithm.

Acknowledgement
The author wishes to thank D. Chaum and W. Fumy for a

challenging remark which made me start the investigations. Further the author
wishes to thank D. Chaum for stimulation during the investigations.The author
also wishes to thank T.Siegenthaler for remarks on a draft version of this article.
References

1 W. Fumy, On the F-function of FEAL, lecture at Crypto 87.

2 A. Shimizu & S. Miyaguchi, Fast data encipherment algorithm FEAL,
Abstracts of Eurocrypt 87.

3 A. Shimizu & S. Miyaguchi, Fast Data Encipherment Algorithm FEAL,
Advances in Cryptology - Eurocrypt ‘87, Lecture Notes in Computer Science
304.

a(a1 az aa
X —>@Dx ' >Dx>sD BD
D
b’ b'| b?|
+1 [
—
+— —P1 41
| 'l ¢? c?
V 2oy e WD VoD
—>D Pe—
dO 01 d2 d3
+1 —
—
R na P8
e° 61 92 93
2o 2o 2@ e

299

